
Unit VII
Differential Equations II

These materials were developed for use at Grinnell College and neither Grinnell College
nor the author, Mark Schneider, assume any responsibility for their suitability or

completeness for use elsewhere nor liability for any damages or injury that may result from
their use elsewhere.

Unit VII
Differential Equations II

In the last unit, we learned some of the basic principles and techniques of solving
differential equations. These are useful for quick illustrative solutions to differential
equations that are not too challenging, the sort of situation in which a ten minute
effort with Excel to modest accuracy will suffice. However, more serious
problems deserve more serious algorithms. In this unit, we will investigate two
more serious algorithms, the first a more general utility method, and the second a
method that is particularly applicable to one dimensional quantum mechanics
problems.

Guidebook Entry VII.1: Runge Kutta Method

In general, when we solve a differential equation, we are updating a starting
value of a function based on the derivative of the function. If the differential
equation is of second order (which is the dominant case for physics
examples), then we simply apply this updating twice in series. So, we lose
little generality by looking at least initially at first order differential
equations.

Let's consider a differential equation for position as a function of time that
looks like this

x'(t) = f.
I have been careful not to specify what the function f depends on. It may
depend on x, or t, or potentially even more complicated things if this is a
second order equation. But let's ignore that for the time being, and imagine
that f depends only on t. If that is true, we can find x(t) by directly
integrating the function f. Write this solution formally below.

If this is an interesting case, then f probably cannot be integrated
analytically. If this is true, then we will have to apply a numerical technique
to the integration of f. Imagine that we are going to integrate a single small
step of f, and write this as a single step of size h using a Simpson's rule
integration. That is, write x(h) as an expression involving x(0), f(0), f(h/2)
and f(h).

This is indeed a good method to use if f depends only on t. However, often
f is related to a force law, and depends not on t alone, but also on the
position x. Explain why this makes evaluation of the Simpson integration
difficult.

Now let's consider f to be a function of both time and distance, which we
will write as f(t,x). Use a simple Euler method and fo to estimate x(h/2):

Write a formal expression (i.e. there is nothing to calculate since we don't
know f) for fh/2 using this estimate of x(h/2):

Use your expression for fh/2 to make an estimate of x(h) (this is essentially
a half-step Euler method extrapolation).

Now, combine all of these estimates of f into the Simpson formula you
wrote on page 1 to give a single step of h in x(t):

Let's see how this works in practice. For simplicity, consider the first order
differential equation

x'(t) = -x(t)
which might in fact be the velocity of an object subject to a drag force,
where x is the velocity, or it might be radioactive decay where x represents
the number of radioactive nuclei present. In any event, we expect a
decreasing exponential as the solution. Choose an initial value x(0) = 1,
and use Excel to integrate this function out to 5 or 10 in steps of h = 0.1.
Compare your results to those of the simple Euler method, and the half-step
Euler method (either using your old sheet, or making new entries for those
methods).

Describe your results.

The formula you derived still has a small error term in third order, which can be
corrected using the following algorithm:

f 0 = f (to , xo)

f1 = f (t0 + h
2 , x0 + h

2 f 0)
f 2 = f (t0 + h,x0 − hf 0 + 2hf1)

and then
x(h) = x(0) + h

6 (f0 + 4 f1 + f 2)

which is truly correct through terms of the order h3. This is known as the third
order Runge-Kutta formula. A fourth-order algorithm involves only slightly more
calculation, and is generally viewed to be the best compromise in balancing
calculational effort with accuracy per step. The fourth-order formula is often
simply referred to as "the" Runge-Kutta method, and looks like

f 0 = f (t0 , x0)

f1 = f (t0 + h
2 , x0 + h

2 f 0)

f 2 = f (t0 + h
2 , x0 + h

2 f1)
f 3 = f (t0 + h, x0 + hf 2)

and then
x(h) = x(0) + h

6 (f0 + 2 f1 + 2 f 2 + f3).
Notice that both the third- and fourth-order Runge-Kutta methods reduce to
Simpson's rule for differential equations where f is a function of time only.

The following method, which is described in several books; I first learned about it
in William Thompson's book. Since it works so well for one dimensional quantum
mechanics problems, it is one that every computational physicist should know
about.

Guidebook Entry VII.2: Waves, Quantum Mechanics and Numerov's
Algorithm

There is a particularly nice algorithm for equations of the form
y'' (x) + K(x)y = S(x)

which is given implicitly by the formula

1 +
h2

12
K1

y1 − 2 1−

5h2

12
K0

y0 + 1 +

h2

12
K−1

y−1 =

h2

12
S1 +10S0 + S−1()

where this gives the step from yo. The way this is written allows one to
move either to smaller values of x, or larger values of x, that is, either to the
left or the right. Notice that this requires two previous values to make a
step, so one must use a simple Euler method to make that first step.
Alternatively, if one knows a symmetry property of the function (e.g. it is a
function like the cosine), one can choose y-1 and yo to be symmetrically
located about the origin and have equal values. The error term in this
algorithm is of the order of h5, or one power higher than the fourth order
Runge-Kutta.

Let's imagine that we are applying this to the differential equation for the
sine and cosine functions:

y'' = -y.

What are the values for K(x) and S(x)?

Rearrange the Numerov algorithm for application to this differential
equation, and write the result below.

We will soon make a spreadsheet that contains this algorithm, but first we
have to have a way to get initial values. Let's imagine that we are looking
for a sine solution. What is the value of this function at x = 0?

What is the slope of this function at x = 0?

We could just make a simple Euler step to get our starting values. This
would introduce a small phase shift into our result. We can avoid this by
choosing two values symmetrically located about the origin. What are these
values, if the x's are to be separated by 0.1? (This result gives no phase
shift, but instead introduces a small amplitude error. This turns out to be
unimportant for quantum examples.)

Apply the Numerov algorithm in your spreadsheet to this differential
equation. You may wish to compare this to a real sine function. Look at

ratios rather than differences to see if my claim of amplitude error is correct.
Describe what you observe.

Finally, let's apply this to the quantum wave example of a finite square
well. Here is a problem that can be solved analytically, although piecewise.
The differential equation looks like

−

h2

2m
y' '(x) + V(x) − E()y = 0

where E is a constant and
V(x) =10 for x >1 otherwise V(x) = 0.

For convenience, you may choose

h2

2m
= 1.

What are the terms S and K from the Numerov algorithm for this differential
equation?

E is a constant that expresses the energy of the system. Put this in a cell in
your spreadsheet so that we might easily vary it. Choose an even symmetry
(equal values for your starting points located symmetrically about x = 0) for
your wave function--y = 1 is just fine. Complete a spreadsheet that
integrates this function from your starting points out to 4.

Those of you who have used taken the Modern Physics course probably
recall a program called quantum well. You have just produced a
spreadsheet that does the same thing. The game is to choose a value for E
that makes the wave function asymptotically approach zero in the

"forbidden" regions, i.e. for x > 1. How describe what happens as you
vary E. How many even solutions can you find?

The numerical differential equation solver in Mathematica, which we used last
week, uses a fancy version of a Runge-Kutta algorithm which is known as
adaptive. Just as we learned about in the integration section, selection of step size
can be a tricky procedure. Make the step size too large, and you can become
terribly inaccurate where the function is wiggling around quickly (and the higher
derivative terms are large). Be too cautious and make the step size overly small,
and the stepping simply takes too much time. Mathematica is clever, and
investigates the function and decides on its own what sort of step size to use, and
then can vary that step size as it moves along.

Another peril in the differential equation solving business is that of stiff differential
equations. These are second-order differential equations that can allow increasing
exponential sorts of solutions that are in principle ruled out by initial conditions, but
in fact creep in because of numerical errors. Mathematica claims to be tough on
these as well as adaptive.

For an optional extra exercise, you may try the following to see if Mathematica can
do better than Numerov on a case that will test its skill on the the former problem
through its adaptive techniques.

Guidebook Entry VII.3: Life on the [Potential} Edge: a Numerical Contest
(Optional)

Consider a quantum mechanical potential that is given by a linear function.
For those of you who have taken Modern Physics, or seen a little quantum
mechanics elsewhere, this means that the particle has increasingly positive
kinetic energy on one side (meaning oscillatory wave function solutions) on
one side, and progressively more and more negative kinetic energy on the
other side (which means exponentially decreasing solutions).

Use simple particular values for your functions and initial conditions. In
particular, use

V(x) = x , and E = 1.
Start out your solution "even" at x = 0, and step solutions into the
oscillatory region (negative x's). Compare the performance of Mathematica
and your Numerov algorithm; you will have to make your best guess for a
step size for Numerov.

