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Unit XII
A Touch of Chaos

It is one of the hot phrases in science these days.  It has even infected popular
movies and novels like Jurassic Park.  But what is this chaos stuff anyway?  And
how does it relate to all these pretty pictures known as fractals?  In this unit we will
learn just a little bit about chaos and those pictures, and a little bit about how some
chaotic systems are calculated.

One basic requirement for chaotic behavior is non-linearity of the governing
equations.  This means that one cannot describe the phenomena by just adding
together some set of basic solutions to produce a general solution, as we do with
for example the harmonic oscillator, or conventional waves, or the solution to a
constant force law.  As a result, the solutions can't be easily predicted; they may
depend very sensitively on starting conditions or on some of the parameters of the
system.  It is almost as extreme in some cases as if a tiny change in the value of g
completely changed whether things fell up or down!

We'll consider a very simple equation that determines our dynamics, from a class
known as logistic difference equations.  This particular equation was one of the first
that gave evidence of this surprising behavior we now call chaos.  It was used in
this particular example taken from James Gleick's book Chaos as an algorithm that
describes population biology.  In this example, first studied in detail by population
biologist Robert May, population changes in intervals of a breeding cycle, and the
population in the next cycle depends positively on the population (more breeders)
and yet negatively on the population (limited resources in the environment).  The
simple form of this is to take the product of a linear increase term (proportional to
the population x, with a presumed maximum possible value of 1) and a limited
resources term proportional to 1-x.  This is all then scaled by some scale constant r
that indicates how big these effects are.  In other words, we have an iterative
calculation:

xnew = rxold(1− xold ).
It would certainly seem at first blush that the behavior of this system would depend
very little on r, except perhaps in how quickly equilibrium is reached.  However,
this looks like an iterative way to calculate the equilibrium population xequilibrium,
and as we know, iterative calculations may or may not be stable.

Guidebook Entry XII.1: Iterations Again!

First, show that the solution of this equation for the equilibrium population
is trivial--find xequilibrium analytically.

Unit XII     Page 1



Physics 295     Computational Physics     Grinnell College     Spring 1998

However, just because we have the equilibrium value, this does not tell us
how quickly we get to that equilibrium, or whether that equilibrium is stable
or not.  Let's use Excel to investigate this iterative calculation.  Make a
spreadsheet that contains the parameter "r" in a convenient cell near the top
left--I'd suggest A2.  Let r start out as 2.  What should the equilibrium value
for x be?

Put in a starter value for x in B2, let's say 0.5 (half populated).  Now, in
C2, put the formula for the next iteration:

xnew = rxold(1− xold ).
Make sure to make the reference to r absolute in terms of letter, but NOT in
terms of number, that is $A2.  Now fill this to the right for 50 or 100 cells.
Does it converge to the expected equilibrium value?

Graph the expected equilibrium values of x as a function of r from r just
above zero to r = 4.  You may use Excel to do this, or Mathematica, or
another package, or do it by hand.  Sketch the result below.

Now see if your iterated calculation converges to the expected value at some
r value between zero and one, say 0.5.  What do you find?

Unit XII     Page 2



Physics 295     Computational Physics     Grinnell College     Spring 1998

Try changing r to exactly 3.  Does the iteration converge to the expected
value?  If not, describe how it does behave.

Check the behavior at r = 3.50.  Describe what you find.

Now move up to r = 3.75.  How would you characterize the iteration.  Does
it converge?  Does it diverge?
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You should have now seen what is known in the chaos business as repeated
period doubling, or bifurcation, leading into chaos.  But lest you think that
you have seen all the surprises, let's check a few other values of r "by
hand."  Describe what you find at r = 3.82:

Then at r = 3.84:

And finally at 3.86:

All of this fascinating behavior has some constraints, at least.  Try r = 4.1,
and describe the results.
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To appreciate the complexity of this behavior a little better, it is convenient to create
a graph that is like the graph you made of xequilibrium  as a function of r, except now
we plot whatever values of x the interation settles upon rather than the equilibrium
value we expect it to find.  To do this, you will create a whole set of rows of
iterated calculations.

Guidebook Entry XII.2:  Creating Robert May's Map

You are going to make a whole series of iterations, each with a different r
value.  First, choose a spacing between r values, call it ∆r, and place that in
a convenient cell near the top left, say at A1 (now you see why I suggested
you start in the second row!).  Make the r value for the second row of
iterations (which you probably have in A3) equal to the cell above plus the
∆r value.  Make sure to have an absolute reference to ∆r.  Now you can fill
down a bunch (not more than 100 or the sheet will get too slow) of r values.
Make sure to start the r's somewhere interesting (maybe 2?) and end a bit
before 4 by choosing your ∆r value carefully.  Now you can take the
iteration algorithm, and fill it down.  Make sure each row goes for about
100 iterations (so 100 cells across) to make sure it has a good chance to
converge.  Now to create the graph, make an x-y (scatter) plot of the last ten
or twenty columns versus the r column.  This will then give a plot that
follows your xequilibrium graph where the iteration converges, but also give
you a visual way of inspecting the period doublings.  Attach your graph.

Now you have seen some of the important features of chaotic dynamics: period
doubling, order and chaos, sensitive dependence on parameters (and in some cases
initial conditions).  There is one more feature we can easily examine with this
example: self-similarity.  In other words, if we take a microscope, and look closely
at our graph, we find small replicas of the large graph hidden in the bigger picture,
much like parallel mirrors in a fun house or an Escher drawing.  To look at this, we
will use a rather primitive Pascal program that draws May's map more quickly than
Excel.

Guidebook Entry XII.3:  Self-similarity

On your hard drive you should find a program called "MayDraw."  The
program is pretty self-explanatory, now that you know what the map is
about.  You get to choose starting and ending r values, and number of
startup iterations, and then the number of iterations graphed after that.
First, graph the whole figure from 2 to 4.  Sketch what it looks like below.
You may want to play with the number of iterations to make the graph
better.
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A mouse click causes the program to exit.  Start it again.  Now concentrate
on the region about 3.8.  Expand this sufficiently to convince yourself there
is a self similar region in the center of this.  You may need to try several
times, and may want  In a homework problem, you will use Excel or
Mathematica to look at this more carefully.  Sketch what you see here.

Finally, let's use Mathematica to look at this same map.  In the process, we will get
a taste of programming techniques in Mathematica.  To make some sense of the
commands, it will help to know that a ";" allows you to string several commands
together in the place of a single command, and that "For" and "Do" are commands
that allow you to perform repetitive calculations.  Feel free to ask questions, or
check things out in the Mathematica book.

Guidebook Entry XII.4:  Chaos in Mathematica

Enter the following simple Mathematica program.  Follow each line with a
"return" rather than an "enter" until you reach the end so that execution is
delayed until you are finished:

mylist = {};
For[r=2,r<4,r+=0.02,

x=0.5;
Do[x=r*x*(1-x),{j,50}];
Do[x=r*x*(1-x);

AppendTo[mylist,{r,x}],
{j,30}

];
];
ListPlot[mylist,Axes->None]

Where is the number of startup iterations specified?  Where are the number
of graphing iterations specified?
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Give an enter, and wait a reasonable time (a couple of minutes).  If all went
well, it should produce a copy of the May map.  Print a copy out and attach
it.

What happens if you make the startup iterations very few, like 10?  Where
do you see the effects most?  You may need to magnify a region to see more
clearly.

Why would this effect make it hard to find the period doubling points
accurately?
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