# **Exploratory Data Analysis**



4 March 2009

Research Methods for Empirical Computer Science CMPSCI 691DD

# **Edwin Hubble**



# What did Hubble see?



#### What did Hubble see?



#### **Hubble's Law**



$$V = H_o r$$

Where:
V = recessional velocity
H<sub>o</sub>= Hubble constant
r = distance (mpc)

E. Hubble (1929). A relation between distance and radial velocity among extra-galactic nebulae. *Proceedings of the National Academy of Sciences* 15(3).

#### **Hubble's Law**





"The tool that is so dull that you cannot cut yourself on it is not likely to be sharp enough to be either useful or helpful."

John W. Tukey



#### **Random variables**

- The "embarrassingly dogmatic misnomer"
- They are neither random, nor are they variables
- A random variable is...
  - a function that maps from instances to scales
  - the numeric result of a non-deterministic experiment
- They can be distinguished from "fixed variables" whose value can be set or predetermined before the experiment
- They are not the individual values (e.g., 5.92), but rather the process of assigning value to instances or (colloquially) the set of values so assigned

## **Examples**

- Recall of an IR system, given query, corpus, and designated relevant documents
- Size and speed of code produced by a compiler, given source and a target processor
- Number of database rows returned, given an anytime query processor, query, database, and time
- Lines of code written, given an assignment, language, development environment, and programmer

#### **Notes**

- The objects of study are usually the systems that enable random variables (e.g., IR systems), rather than the instances that the measures are on (e.g., queries).
- What we define as a random variable for a particular experiment can change as we discover deterministic and causal relationships in a given system

## Representation of data instances

- i.i.d. instances are commonly assumed
  - Independent Knowing something about one instance tells you nothing about another
  - Identically distributed Drawn from the same probability distribution
- Examples?
  - Queries in TREC data
  - Programs in SPEC benchmarks
  - Data sets in UCI repository
- Some alternatives
  - Time series
     (e.g., users submitting sets of slightly modified queries)
  - Relational
     (e.g., router performance embedded in a network)

## **Populations and samples**

- A population is a specified set of instances
  - An actual finite set of instances (e.g., the UCI data sets for machine learning research)
  - A generalization of an actual finite set (e.g., the set of all data sets that might be produced by a particular simulator in infinite time)
  - A purely hypothetical set which can be described mathematically (e.g., the set of all correct Java programs)
- Samples are finite subsets of populations

# **Examples**

| Populations                              | Actual data samples                        |
|------------------------------------------|--------------------------------------------|
| All possible<br>IR queries               | The TREC 2005<br>HARD queries              |
| All possible programs<br>written in Java | The SPECjvm98<br>benchmarks                |
| All Java programmers active in 2005      | Students taking<br>CMPSCI 320 in Fall 2005 |
| The SPECjvm98<br>benchmarks              | A subset of the benchmarks                 |

## Four stages of defining a sample

- The target population
   (e.g., all computer programs)
- The sampling frame

   (all programs written in Java or C++)
- The selected sample

   (all programs written by CS undergraduate students in 200-level courses at UMass)
- The actual sample
   (all programs actually turned in)

# Why is sampling difficult?



## Sampling problems



- The target population
- The sampling frame
- The selected sample
- The actual sample

## Random sampling in CS

- Random sampling isn't easy in CS
- ...but it's not easy in most sciences
- Answer isn't to give up, but to consider how to get closer to the ideal
  - Define the ideal population
  - Identify sources of bias in sampling and in subsequent steps of sample definition
  - Remove or mitigate as many sources of bias as possible
- Modify your confidence in your ability generalize based on your assessment of the match between your actual sample and your desired population

## **Types of scales**

- Categorical, discrete, or nominal Values contain no ordering information (e.g., multiple-access protocols for underwater networking)
- Ordinal Values indicate order, but no arithmetic operations are meaningful (e.g., "novice", "experienced", and "expert" as designations of programmers participating in an experiment)
- Interval Distances between values are meaningful, but zero point is not meaningful. (e.g., degrees Fahrenheit)
- Ratio Distances are meaningful and a zero point is meaningful (e.g., degrees K)

#### **Data transformations**

- Downgrading type (e.g., interval to ordinal)
- Shifting intervals
  - Tukey's "ladder of powers": trans = original^(1-b)
  - E.g.: -2 -> original^3, 0.5 -> sqrt(original), 2 -> 1/original
- Combining several variables
  - Normalize measurements
     (e.g., Simsek & Jensen 2005, normalized to optimal)
  - Remove unwanted factors
     (e.g., remove file read times from total compile times)
  - Consider relation of two variables
     (e.g., Kirkpatrick & Selman, vertex/edge ratio)

## **Exploratory data analysis**

- "Exploratory data analysis (EDA)... employs a variety of techniques to...
  - maximize insight into a data set;
  - uncover underlying structure;
  - extract important variables;
  - detect outliers and anomalies;
  - test underlying assumptions;
  - develop parsimonious models; and
  - determine optimal factor settings"
- "The EDA approach is precisely that an approach not a set of techniques, but an attitude/philosophy about how a data analysis should be carried out."

## Why EDA?

- Data analysis tools are typically used for
  - Hypothesis testing
  - Parameter estimation
- Graphics tools are typically used for presentation
- However, much of the quality of scientific work is determined by the quality of the hypotheses and models used by the researcher
- Can data analysis help suggest hypotheses?

#### Resources

- Books
  - Exploratory Data Analysis, Tukey, (1977)
  - Data Analysis and Regression, Mosteller and Tukey (1977)
  - Interactive Data Analysis, Hoaglin (1977)
  - The ABC's of EDA, Velleman and Hoaglin (1981)
- Software
  - Data Desk (Data Description)
  - Fathom (Keypress)
  - XGobi (AT&T Research)

# **Exploratory Data Analysis**



Copyright © 2009, 2015 David Jensen.

Except where noted, this material is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/">http://creativecommons.org/licenses/by-nc-sa/4.0/</a>

All content not licensed under a Creative Commons license has all rights reserved, and you must request permission from the copyright owner to use this material.

Material not licensed under a Creative Commons License is:

- Images on pp. 2–8, 17
- Text on pp. 8, 21

For related context, please see the following paper:

Jerod Weinman, David Jensen, and David Lopatto. 2015. Teaching Computing as Science in a Research Experience. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education (SIGCSE '15). ACM, New York, NY, USA, 24-29. <a href="http://dx.doi.org/10.1145/2676723.2677231">http://dx.doi.org/10.1145/2676723.2677231</a>

Other slides in this series may be found here: <a href="http://dx.doi.org/11084/10002">http://dx.doi.org/11084/10002</a>