Completely Decomposable Jacobian Varieties in New Genera

Primary tabs

We present a new technique to study Jacobian variety decompositions using subgroups of the automorphism group of the curve and the corresponding intermediate covers. In particular, this new method allows us to produce many new examples of genera for which there is a curve with completely decomposable Jacobian. These examples greatly extend the list given by Ekedahl and Serre of genera containing such curves, and provide more evidence for a positive answer to two questions they asked. Additionally, we produce new examples of families of curves, all of which have completely decomposable Jacobian varieties. These families relate to questions about special subvarieties in the moduli space of principally polarized abelian varieties.